On extreme zeros of classical orthogonal polynomials

نویسنده

  • Ilia Krasikov
چکیده

Let x1 and xk be the least and the largest zeros of the Laguerre or Jacobi polynomial of degree k. We shall establish sharp inequalities of the form x1 < A, xk > B, which are uniform in all the parameters involved. Together with inequalities in the opposite direction, recently obtained by the author, this locates the extreme zeros of classical orthogonal polynomials with the relative precision, roughly speaking, O(k−2/3).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monotonicity of Zeros of Orthogonal Laurent Polynomials

Monotonicity of zeros of orthogonal Laurent polynomials associated with a strong distribution with respect to a parameter is discussed. A natural analog of a classical result of A. Markov is proved. Recent results of Ismail and Muldoon based on the Hellman-Feynman theorem are also extended to a monotonicity criterion for zeros of Laurent polynomials. Results concerning the behaviour of extreme ...

متن کامل

Bounds for zeros of Meixner and Kravchuk polynomials

The zeros of certain different sequences of orthogonal polynomials interlace in a well-defined way. The study of this phenomenon and the conditions under which it holds lead to a set of points that can be applied as bounds for the extreme zeros of the polynomials. We consider different sequences of the discrete orthogonal Meixner and Kravchuk polynomials and use mixed three term recurrence rela...

متن کامل

Bound on the Extreme Zeros of Orthogonal Polynomials

Using chain sequences we formulate a procedure to find upper (lower) bounds for the largest (smallest) zero of orthogonal polynomials in terms of their recurrence coefficients. We also apply our method to derive bounds for extreme zeros of the Laguerre, associated Laguerre, Meixner, and MeixnerPollaczek polynomials. In addition, we consider bounds for the extreme zeros of Jacobi polynomials of ...

متن کامل

Applications of the monotonicity of extremal zeros of orthogonal polynomials in interlacing and optimization problems

We investigate monotonicity properties of extremal zeros of orthogonal polynomials depending on a parameter. Using a functional analysis method we prove the monotonicity of extreme zeros of associated Jacobi, associated Gegenbauer and q-Meixner-Pollaczek polynomials. We show how these results can be applied to prove interlacing of zeros of orthogonal polynomials with shifted parameters and to d...

متن کامل

Convexity of the Extreme Zeros of Classical Orthogonal Polynomials

Let Cλ n(x), n = 0, 1, . . . , λ > −1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal in (−1, 1) with respect to the weight function (1−x2)λ−1/2. Denote by xnk(λ), k = 1, . . . , n, the zeros of Cλ n(x) enumerated in decreasing order. In this short note we prove that, for any n ∈ IN , the product (λ+1)xn1(λ) is a convex function of λ if λ ≥ 0. The result is applied to obtain some ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003